Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
J Photochem Photobiol B ; 255: 112919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677261

RESUMEN

Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.


Asunto(s)
Autofagia , Lisosomas , Fármacos Fotosensibilizantes , Humanos , Células HT29 , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inhibidores , Luz , Porfirinas/farmacología , Porfirinas/química , Catepsina D/metabolismo , Catepsina B/metabolismo
2.
Neurotox Res ; 42(1): 2, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095761

RESUMEN

A feature in neurodegenerative disorders is the loss of neurons, caused by several factors including oxidative stress induced by reactive oxygen species (ROS). In this work, static magnetic field (SMF) was applied in vitro to evaluate its effect on the viability, proliferation, and migration of human neuroblastoma SH-SY5Y cells, and on the toxicity induced by hydrogen peroxide (H2O2), tert-butyl hydroperoxide (tBHP), H2O2/sodium azide (NaN3) and photosensitized oxidations by photodynamic therapy (PDT) photosensitizers. The SMF increased almost twofold the cell expression of the proliferation biomarker Ki-67 compared to control cells after 7 days of exposure. Exposure to SMF accelerated the wound healing of scratched cell monolayers and significantly reduced the H2O2-induced and the tBHP-induced cell deaths. Interestingly, SMF was able to revert the effects of NaN3 (a catalase inhibitor), suggesting an increased activity of catalase under the influence of the magnetic field. In agreement with this hypothesis, SMF significantly reduced the oxidation of DCF-H2, indicating a lower level of intracellular ROS. When the redox imbalance was triggered through photosensitized oxidation, no protection was observed. This observation aligns with the proposed role of catalase in cellular proctetion under SMF.  Exposition to SMF should be further validated in vitro and in vivo as a potential therapeutic approach for neurodegenerative disorders.


Asunto(s)
Neuroblastoma , Enfermedades Neurodegenerativas , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peróxidos/farmacología , Peróxido de Hidrógeno/toxicidad , Línea Celular Tumoral , Catalasa/metabolismo , Neuroblastoma/metabolismo , Estrés Oxidativo , Campos Magnéticos
3.
Chem Rev ; 123(16): 9720-9785, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37459506

RESUMEN

Endogenous photosensitizers play a critical role in both beneficial and harmful light-induced transformations in biological systems. Understanding their mode of action is essential for advancing fields such as photomedicine, photoredox catalysis, environmental science, and the development of sun care products. This review offers a comprehensive analysis of endogenous photosensitizers in human skin, investigating the connections between their electronic excitation and the subsequent activation or damage of organic biomolecules. We gather the physicochemical and photochemical properties of key endogenous photosensitizers and examine the relationships between their chemical reactivity, location within the skin, and the primary biochemical events following solar radiation exposure, along with their influence on skin physiology and pathology. An important take-home message of this review is that photosensitization allows visible light and UV-A radiation to have large effects on skin. The analysis presented here unveils potential causes for the continuous increase in global skin cancer cases and emphasizes the limitations of current sun protection approaches.


Asunto(s)
Fármacos Fotosensibilizantes , Neoplasias Cutáneas , Humanos , Piel/efectos de la radiación , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , Rayos Ultravioleta , Luz
4.
Nano Lett ; 23(12): 5497-5505, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37300521

RESUMEN

Nanostructured contrast agents are promising alternatives to Gd3+-based chelates in magnetic resonance (MR) imaging techniques. A novel ultrasmall paramagnetic nanoparticle (UPN) was strategically designed to maximize the number of exposed paramagnetic sites and r1 while minimizing r2, by decorating 3 nm titanium dioxide nanoparticles with suitable amounts of iron oxide. Its relaxometric parameters are comparable to those of gadoteric acid (GA) in agar phantoms, and the r2/r1 ratio of 1.38 at 3 T is close to the ideal unitary value. The strong and prolonged contrast enhancement of UPN before renal excretion was confirmed by T1-weighted MR images of Wistar rats after intravenous bolus injection. Those results associated with good biocompatibility indicate its high potential as an alternative blood-pool contrast agent to the GA gold standard for MR angiography, especially for patients with severe renal impairment.


Asunto(s)
Medios de Contraste , Angiografía por Resonancia Magnética , Ratas , Animales , Gadolinio , Ratas Wistar , Imagen por Resonancia Magnética/métodos , Quelantes
5.
J Photochem Photobiol B ; 243: 112703, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37023538

RESUMEN

Visible light (VL) surely affects human skin in several ways, exerting positive (tissue regeneration, pain relief) and negative (oxidation, inflammation) effects, depending on the radiation dose and wavelength. Nevertheless, VL continues to be largely disregarded in photoprotection strategies, perhaps because the molecular mechanisms occurring during the interaction of VL with endogenous photosensitizers (ePS) and the subsequent biological responses are still poorly understood. Besides, VL encompass photons with different properties and interaction capacities with the ePS, but there are no quantitative comparisons of their effects on humans. Here, we studied the effects of physiologically relevant doses of four wavelengths ranges of VL, i.e. (in nm), 408-violet, 466/478-blue, 522-green, 650-red, in immortalized human skin keratinocytes (HaCaT). The level of cytotoxicity/damage follows the order: violet>blue >green>red. Violet and blue light induced the highest levels of Fpg-sensitive lesions in nuclear DNA, oxidative stress, lysosomal and mitochondrial damage, disruption of the lysosomal-mitochondrial axis of cell homeostasis, blockade of the autophagic flux, as well as lipofuscin accumulation, greatly increasing the toxicity of wideband VL to human skin. We hope this work will stimulate in development of optimized sun protection strategies.


Asunto(s)
Queratinocitos , Luz , Humanos , Queratinocitos/efectos de la radiación , Piel/efectos de la radiación , Estrés Oxidativo , Oxidación-Reducción , Rayos Ultravioleta
6.
Microbiol Spectr ; : e0283322, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809152

RESUMEN

Antimicrobial blue light (aBL) offers efficacy and safety in treating infections. However, the bacterial targets for aBL are still poorly understood and may be dependent on bacterial species. Here, we investigated the biological targets of bacterial killing by aBL (λ = 410 nm) on three pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Initially, we evaluated the killing kinetics of bacteria exposed to aBL and used this information to calculate the lethal doses (LD) responsible for killing 90 and 99.9% of bacteria. We also quantified endogenous porphyrins and assessed their spatial distribution. We then quantified and suppressed reactive oxygen species (ROS) production in bacteria to investigate their role in bacterial killing by aBL. We also assessed aBL-induced DNA damage, protein carbonylation, lipid peroxidation, and membrane permeability in bacteria. Our data showed that P. aeruginosa was more susceptible to aBL (LD99.9 = 54.7 J/cm2) relative to S. aureus (LD99.9 = 158.9 J/cm2) and E. coli (LD99.9 = 195 J/cm2). P. aeruginosa exhibited the highest concentration of endogenous porphyrins and level of ROS production relative to the other species. However, unlike other species, DNA degradation was not observed in P. aeruginosa. Sublethal doses of blue light (LD99.9). We conclude that the primary targets of aBL depend on the species, which are probably driven by variable antioxidant and DNA-repair mechanisms. IMPORTANCE Antimicrobial-drug development is facing increased scrutiny following the worldwide antibiotic crisis. Scientists across the world have recognized the urgent need for new antimicrobial therapies. In this sense, antimicrobial blue light (aBL) is a promising option due to its antimicrobial properties. Although aBL can damage different cell structures, the targets responsible for bacterial inactivation have still not been completely established and require further exploration. In our study, we conducted a thorough investigation to identify the possible aBL targets and gain insights into the bactericidal effects of aBL on three relevant pathogens: Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. This research not only adds new content to blue light studies but opens new perspectives to antimicrobial applications.

7.
J Photochem Photobiol B ; 239: 112647, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36634432

RESUMEN

UV-A radiation affects skin homeostasis by promoting oxidative distress. Endogenous photosensitizers in the dermis and epidermis of human skin absorb UV-A radiation forming excited states (singlet and triplet) and reactive oxygen species (ROS) producing oxidized compounds that trigger biological responses. The activation of NF-kB induces the expression of pro-inflammatory cytokines and can intensify the generation of ROS. However, there is no studies evaluating the cross talks between inflammatory stimulus and UV-A exposure on the levels of redox misbalance and inflammation. In here, we evaluated the effects of UV-A exposure on J774 macrophage cells previously challenged with LPS in terms of oxidative distress, release of pro-inflammatory cytokines, and activation of regulated cell death pathways. Our results showed that LPS potentiates the dose-dependent UV-A-induced oxidative distress and cytokine release, in addition to amplifying the regulated (autophagy and apoptosis) and non-regulated (necrosis) mechanisms of cell death, indicating that a previous inflammatory stimulus potentiates UV-A-induced cell damage. We discuss these results in terms of the current-available skin care strategies.


Asunto(s)
Lipopolisacáridos , Estrés Oxidativo , Humanos , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/farmacología , Piel/efectos de la radiación , Citocinas/metabolismo
8.
Biochim Biophys Acta Mol Cell Res ; 1870(3): 119429, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36608805

RESUMEN

Photodynamic therapy (PDT) is a process in which a photosensitizer (PS) is exposed to specific wavelengths and generates reactive oxygen species (ROS) which act within nanometers. The low invasive nature and directed cytotoxicity of this approach render it attractive to the treatment of different conditions, including the ones that affect the central nervous system (CNS). The effect of PDT on healthy neurons is one main concern over its use in the CNS, since neuronal-like cells were shown to be particularly sensitive to certain PSs. Among available PSs, 1,9-dimethyl-methylene blue (DMMB) stands out as being resistant to reduction to its inactive leuco form and by being able to produce high levels of singlet­oxygen. In this study, we aimed to investigate DMMB photodamage mechanisms in the hippocampal cell line HT22. Our results demonstrate that DMMB-PDT decrease in cell viability was linked with an increase in cell death and overall ROS production. Besides, it resulted in a significant increase in mitochondrial ROS production and decreased mitochondria membrane potential. Furthermore, DMMB-PDT significantly increased the presence of acidic autolysosomes, which was accompanied by an increase in ATG1 and ATG8 homologue GaBarap1 expression, and decreased DRAM1 expression. Taken together our results indicated that mitochondrial and autophagic dysfunction underlie DMMB-PDT cytotoxicity in neuronal cells.


Asunto(s)
Fotoquimioterapia , Fotoquimioterapia/métodos , Azul de Metileno/metabolismo , Azul de Metileno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo
9.
Langmuir ; 39(1): 442-452, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36576408

RESUMEN

The physical properties of lipid membranes depend on their lipid composition. Photosensitized singlet oxygen (1O2) provides a handle to spatiotemporally control the generation of lipid hydroperoxides via the ene reaction, enabling fundamental studies on membrane dynamics in response to chemical composition changes. Critical to relating the physical properties of the lipid membrane to hydroperoxide formation is the availability of a sensitive reporter to quantify the arrival of 1O2. Here, we show that a fluorogenic α-tocopherol analogue, H4BPMHC, undergoes a >360-fold emission intensity enhancement in liposomes following a reaction with 1O2. Rapid quenching of 1O2 by the probe (kq = 4.9 × 108 M-1 s-1) ensures zero-order kinetics of probe consumption. The remarkable intensity enhancement of H4BPMHC upon 1O2 trapping, its linear temporal behavior, and its protective role in outcompeting membrane damage provide a sensitive and reliable method to quantify the 1O2 flux on lipid membranes. Armed with this probe, fluorescence microscopy studies were devised to enable (i) monitoring the flux of photosensitized 1O2 into giant unilamellar vesicles (GUVs), (ii) establishing the onset of the ene reaction with the double bonds of monounsaturated lipids, and (iii) visualizing the ensuing collective membrane expansion dynamics associated with molecular changes in the lipid structure upon hydroperoxide formation. A correlation was observed between the time for antioxidant H4BPMHC consumption by 1O2 and the onset of membrane fluctuations and surface expansion. Together, our imaging studies with H4BPMHC in GUVs provide a methodology to explore the intimate relationship between photosensitizer activity, chemical insult, membrane morphology, and its collective dynamics.


Asunto(s)
Oxígeno Singlete , Liposomas Unilamelares , Liposomas Unilamelares/química , Peróxido de Hidrógeno , Antioxidantes/química , Lípidos/química
10.
Photochem Photobiol Sci ; 22(4): 729-744, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36495407

RESUMEN

Pancreatic ductal adenocarcinomas (PDAC) are the fourth leading cause of death due to neoplasms. In view of the urgent need of effective treatments for PDAC, photodynamic therapy (PDT) appears as a promising alternative. However, its efficacy against PDAC and the mechanisms involved in cell death induction remain unclear. In this study, we set out to evaluate PDT's cytotoxicity using methylene blue (MB) as a photosensitizer (PS) (MB-PDT) and to evaluate the contribution of necroptosis in its effect in human PDAC cells. Our results demonstrated that MB-PDT induced significant death of different human PDAC models presenting two different susceptibility profiles. This effect was independent of MB uptake or its subcellular localization. We found that the ability of triggering necroptosis was determinant to increase the treatment efficiency. Analysis of single cell RNA-seq data from normal and neoplastic human pancreatic tissues showed that specific necroptosis proteins RIPK1, RIPK3 and MLKL presented significant higher expression levels in cells displaying a transformed phenotype providing further support to the use of approaches that activate necroptosis, like MB-PDT, as useful adjunct to surgery of PDAC to tackle the problem of microscopic residual disease as well as to minimize the chance of local and metastatic recurrence.


Asunto(s)
Adenocarcinoma , Fotoquimioterapia , Humanos , Azul de Metileno/farmacología , Necroptosis , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Apoptosis , Neoplasias Pancreáticas
11.
Photochem Photobiol ; 99(2): 732-741, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35944220

RESUMEN

Hydroxypyranoflavylium (HPF) cations are synthetic analogs possessing the same basic chromophore as the pyranoanthocyanins that form during the maturation of red wine. HPF cations absorb strongly in the visible spectral region, and most are fluorescent, triplet-sensitize singlet oxygen formation in solution and are strong photooxidants, properties that are desirable in a sensitizer for photodynamic therapy (PDT). The results of this study demonstrate that several simple HPF dyes can indeed function as PDT sensitizers. Of the eight HPF cations investigated in this work, four were phototoxic to a human cervical adenocarcinoma cell line (HeLa) at the 1-10 µmol dm-3 level, while only one of the eight compounds showed noticeable cytotoxicity in the dark. Neither a Type I nor a Type II mechanism can adequately rationalize the differences in phototoxicity of the compounds. Colocalization experiments with the most phototoxic compound demonstrated the affinity of the dye for both the mitochondria and lysosomes of HeLa cells. The fact that relatively modest structural differences, e.g., the exchange of an electron-donating substituent for an electron-withdrawing substituent, can cause profound differences in the phototoxicity, together with the relatively facile synthesis of substituted HPF cations, makes them interesting candidates for further evaluation as PDT sensitizers.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Células HeLa , Colorantes/química , Oxígeno Singlete/metabolismo
12.
Photochem Photobiol ; 99(2): 742-750, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35913428

RESUMEN

The unbridled dissemination of multidrug-resistant pathogens is a major threat to global health and urgently demands novel therapeutic alternatives. Antimicrobial photodynamic therapy (aPDT) has been developed as a promising approach to treat localized infections regardless of drug resistance profile or taxonomy. Even though this technique has been known for more than a century, discussions and speculations regarding the biochemical mechanisms of microbial inactivation have never reached a consensus on what is the primary cause of cell death. Since photochemically generated oxidants promote ubiquitous reactions with various biomolecules, researchers simply assumed that all cellular structures are equally damaged. In this study, biochemical, molecular, biological and advanced microscopy techniques were employed to investigate whether protein, membrane or DNA damage correlates better with dose-dependent microbial inactivation kinetics. We showed that although mild membrane permeabilization and late DNA damage occur, no correlation with inactivation kinetics was found. On the other hand, protein degradation was analyzed by three different methods and showed a dose-dependent trend that matches microbial inactivation kinetics. Our results provide a deeper mechanistic understanding of aPDT that can guide the scientific community toward the development of optimized photosensitizing drugs and also rationally propose synergistic combinations with antimicrobial chemotherapy.


Asunto(s)
Antiinfecciosos , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Fotoquimioterapia/métodos , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Viabilidad Microbiana , Antibacterianos/química
13.
Photochem Photobiol ; 99(2): 313-334, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36575651

RESUMEN

The interaction of light with natural matter leads to a plethora of photosensitized reactions. These reactions cause the degradation of biomolecules, such as DNA, lipids, proteins, being therefore detrimental to the living organisms, or they can also be beneficial by allowing the treatment of several diseases by photomedicine. Based on the molecular mechanistic understanding of the photosensitization reactions, we propose to classify them in four processes: oxygen-dependent (type I and type II processes) and oxygen-independent [triplet-triplet energy transfer (TTET) and photoadduct formation]. In here, these processes are discussed by considering a wide variety of approaches including time-resolved and steady-state techniques, together with solvent, quencher, and scavenger effects. The main aim of this survey is to provide a description of general techniques and approaches that can be used to investigate photosensitization reactions of biomolecules together with basic recommendations on good practices. Illustration of the suitability of these approaches is provided by the measurement of key biomarkers of singlet oxygen and one-electron oxidation reactions in both isolated and cellular DNA. Our work is an educational review that is mostly addressed to students and beginners.


Asunto(s)
Oxígeno , Oxígeno Singlete , Humanos , Transferencia de Energía , ADN
14.
Photochem Photobiol ; 99(2): 826-834, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36109156

RESUMEN

Cellular oxidative stress contributes to solar ultraviolet (UV) radiation-induced skin photoaging and photocarcinogenesis. Light-driven electron and energy transfer reactions involving non-DNA chromophores are a major source of reactive oxygen species (ROS) in skin, and the molecular identity of numerous endogenous chromophores acting as UV-photosensitizers has been explored. Methylglyoxal (MG), a glycolytic byproduct bearing a UV-active α-dicarbonyl-chromophore, is generated under metabolic conditions of increased glycolytic flux, associated with posttranslational protein adduction in human tissue. Here, we undertook a photophysical and photochemical characterization of MG substantiating its fluorescence properties (Stokes shift), phosphorescence lifetime, and quantum yield of singlet oxygen (1 O2 ) formation. Strikingly, upon UV-excitation (290 nm), a clear emission (around 490 nm) was observed (phosphorescence-lifetime: 224.2 milliseconds). At micromolar concentrations, MG acts as a UVA-photosensitizer targeting human HaCaT-keratinocytes inducing photooxidative stress and caspase-dependent cell death substantiated by zVADfmk-rescue and Alexa-488 caspase-3 flow cytometry. Transcriptomic analysis indicated that MG (photoexcited by noncytotoxic doses of UVA) elicits expression changes not observable upon isolated MG- or UVA-treatment, with upregulation of the proteotoxic (CRYAB, HSPA6) and oxidative (HMOX1) stress response. Given the metabolic origin of MG and its role in human pathology, future investigations should address the potential involvement of MG-photosensitizer activity in human skin photodamage.


Asunto(s)
Fármacos Fotosensibilizantes , Piruvaldehído , Humanos , Fármacos Fotosensibilizantes/farmacología , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Estrés Proteotóxico , Rayos Ultravioleta , Queratinocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Expresión Génica , Glucólisis
15.
Methods Mol Biol ; 2451: 261-283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35505023

RESUMEN

The development of improved photosensitizers is a key aspect in the establishment of photodynamic therapy (PDT) as a reliable treatment modality. In this chapter, we discuss how molecular design can lead to photosensitizers with higher selectivity and better efficiency, with focus on the importance of specific intracellular targeting in determining the cell death mechanism and, consequently, the PDT outcome.


Asunto(s)
Fotoquimioterapia , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
17.
Photochem Photobiol ; 98(3): 572-590, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34931324

RESUMEN

Lipids are important targets of the photosensitized oxidation reactions, forming important signaling molecules, disorganizing and permeabilizing membranes, and consequently inducing a variety of biological responses. Although the initial steps of the photosensitized oxidative damage in lipids are known to occur by both Type I and Type II mechanisms, the progression of the peroxidation reaction, which leads to important end-point biological responses, is poorly known. There are many experimental tools used to study the products of lipid oxidation, but neither the methods nor their resulting observations were critically compared. In this article, we will review the tools most frequently used and the key concepts raised by them in order to rationalize a comprehensive model for the initiation and the progression steps of the photoinduced lipid oxidation.


Asunto(s)
Lípidos , Estrés Oxidativo , Peroxidación de Lípido , Oxidación-Reducción
18.
Soft Matter ; 17(48): 10926-10934, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34811564

RESUMEN

The formation of hydrogels by photosensitized oxidation and crosslinking of histidine-derived polymers is demonstrated for the first time. The photooxidation of pendant His mediated by singlet oxygen was used to promote covalent coupling by its dimerization. As a proof-of-concept, two systems were studied: (i) chondroitin sulfate (CS) functionalized with His, and (ii) an elastin-like peptide (ELP) containing His produced by recombinant techniques. Both materials were crosslinked by irradiation at 425 nm in the presence of Zn-porphyrin derivatives yielding His-based hydrogels. The molecular structure and physicochemical properties of ELP-His and other 5 ELPs with photooxidizable amino acids were studied in silica by computer simulation. A correlation between the protein conformation and its elastic properties is discussed. CS-His hydrogels demonstrate larger storage moduli than ELPs with other amino acids. The obtained results show the potential use of photooxidation to create a new type of His-based hydrogels.


Asunto(s)
Histidina , Hidrogeles , Simulación por Computador , Elastina , Oxígeno , Oxígeno Singlete
19.
Nanomaterials (Basel) ; 11(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201069

RESUMEN

The development of resistance against photodamage triggered by photodynamic therapy (PDT) is ascribed mainly to the cellular redox defenses and repair. If the tumor tissue is not promptly eliminated by the first few PDT sessions, PDT-resistance can be favored, challenging the efficacy of the treatment. Although the mechanism of PDT resistance is still unclear, in vitro assays have evidenced that it can be developed through the PARP damage-repair signaling pathway. Therefore, inhibition of poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP) has the potential to increase PDT efficacy. This work reports on the synthesis of a controlled release system of a photosensitizer, methylene blue (MB) and a PARP-inhibitor, the veliparib. MB and veliparib were co-encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (VMB-NPs). A colloidal stable aqueous suspension of nanoparticles was obtained. The average hydrodynamic diameter was 90 nm and a narrow size distribution was obtained, with a polydispersity index (PDI) of 0.08. The release kinetics of MB and veliparib from VMB-NPs showed an initial burst of 8.7% and 58.3% release of the total amounts of MB and veliparib respectively, in the first 6 h, and a delayed release of up to 11.3% and 70%, in 19 days, for MB and veliparib, respectively. The VMB-NPs showed no cytotoxicity in the dark but the viability of B16F10-Nex2 cells decreased by 36% when the cells were irradiated (102 J/cm2, 660 nm) and treated with VMB-NPs containing 1.0 µM of MB and 8.3 µM of veliparib. Considering the increased photoactivity even at low MB and veliparib concentrations and the absence of cytotoxicity in dark, the co-encapsulation of MB and veliparib was shown to be a promising strategy to improve the PDT efficacy.

20.
Photochem Photobiol ; 97(6): 1456-1483, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34133762

RESUMEN

Photosensitization reactions have been demonstrated to be largely responsible for the deleterious biological effects of UV and visible radiation, as well as for the curative actions of photomedicine. A large number of endogenous and exogenous photosensitizers, biological targets and mechanisms have been reported in the past few decades. Evolving from the original definitions of the type I and type II photosensitized oxidations, we now provide physicochemical frameworks, classifications and key examples of these mechanisms in order to organize, interpret and understand the vast information available in the literature and the new reports, which are in vigorous growth. This review surveys in an extended manner all identified photosensitization mechanisms of the major biomolecule groups such as nucleic acids, proteins, lipids bridging the gap with the subsequent biological processes. Also described are the effects of photosensitization in cells in which UVA and UVB irradiation triggers enzyme activation with the subsequent delayed generation of superoxide anion radical and nitric oxide. Definitions of photosensitized reactions are identified in biomolecules with key insights into cells and tissues.


Asunto(s)
Ácidos Nucleicos , Trastornos por Fotosensibilidad , Humanos , Oxidación-Reducción , Fármacos Fotosensibilizantes/farmacología , Superóxidos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...